Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517690

RESUMO

The Bay of Bengal (BoB) spans >2.2 million km2 in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well-characterized. We analysed the BoB regions during the summer monsoon. Prochlorococcus ranged up to 3.14 × 105 cells mL-1 in the surface mixed layer, averaging 1.74 ± 0.46 × 105 in the upper 10 m and consistently higher than Synechococcus and eukaryotic phytoplankton. V1-V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 ± 1% of Prochlorococcus amplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 ± 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapid Prochlorococcus growth between 1.5 and 3.1 div day-1, based on cell cycle analysis, as confirmed by abundance-based estimates of 2.1 div day-1. Accumulation of Prochlorococcus produced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicate Prochlorococcus growth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production.


Assuntos
Prochlorococcus , Synechococcus , Água do Mar , Prochlorococcus/metabolismo , Ecótipo , Baías , Synechococcus/genética , Fitoplâncton/genética
2.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987557

RESUMO

Marine algae are central to global carbon fixation, and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change; however, there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA modification enzymes and biased codon usage of transcripts more abundant during phosphate-limiting versus phosphate-replete conditions, consistent with the role of transfer RNA modifications in regulating codon recognition. To associate the observed shift in the expression of the transfer RNA modification enzyme complement with the transfer RNAs encoded by M. commoda, we also determined the transfer RNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing phosphate limitation and photosystem-associated proteins that have ill-characterized putative functions in "light stress." The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in transfer RNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation that extends beyond the catalog of up- or downregulated protein-encoding genes to the cell biological controls that underpin acclimation to changing environmental conditions.


Assuntos
Clorófitas , Uso do Códon , Fosfatos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon/genética , Códon/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Biossíntese de Proteínas
3.
Proc Natl Acad Sci U S A ; 120(27): e2302388120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364109

RESUMO

Prochlorococcus is a key member of open-ocean primary producer communities. Despite its importance, little is known about the predators that consume this cyanobacterium and make its biomass available to higher trophic levels. We identify potential predators along a gradient wherein Prochlorococcus abundance increased from near detection limits (coastal California) to >200,000 cells mL-1 (subtropical North Pacific Gyre). A replicated RNA-Stable Isotope Probing experiment involving the in situ community, and labeled Prochlorococcus as prey, revealed choanoflagellates as the most active predators of Prochlorococcus, alongside a radiolarian, chrysophytes, dictyochophytes, and specific MAST lineages. These predators were not appropriately highlighted in multiyear conventional 18S rRNA gene amplicon surveys where dinoflagellates and other taxa had highest relative amplicon abundances across the gradient. In identifying direct consumers of Prochlorococcus, we reveal food-web linkages of individual protistan taxa and resolve routes of carbon transfer from the base of marine food webs.


Assuntos
Coanoflagelados , Dinoflagelados , Prochlorococcus , Prochlorococcus/genética , Bactérias , Oceanos e Mares , Água do Mar/microbiologia
4.
Environ Microbiol ; 25(11): 2118-2141, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37311449

RESUMO

The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients-which have low temperature variation (27-29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml-1 , predominantly HLII, whereas LLII and 'rare' ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml-1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml-1 , surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto 'rare' picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.


Assuntos
Clorófitas , Ecossistema , Humanos , Salinidade , Baías , Água do Mar/microbiologia , Fotossíntese , Fitoplâncton , Clorofila
5.
Nat Microbiol ; 7(9): 1466-1479, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970961

RESUMO

Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete 'Comchoano' genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella's that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs.


Assuntos
Coanoflagelados , Microbiota , Animais , Bactérias , Humanos , Oceano Pacífico , Sistemas de Secreção Tipo IV
6.
Nat Commun ; 12(1): 6651, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789758

RESUMO

The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.


Assuntos
Eucariotos/genética , Plastídeos/genética , Rodófitas/genética , Evolução Biológica , Eucariotos/classificação , Variação Genética , Genoma/genética , Genômica , Filogenia , Rodófitas/classificação , Análise de Célula Única
7.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33674432

RESUMO

Coral reefs are possible sinks for microbes; however, the removal mechanisms at play are not well understood. Here, we characterize pelagic microbial groups at the CARMABI reef (Curaçao) and examine microbial consumption by three coral species: Madracis mirabilis, Porites astreoides, and Stephanocoenia intersepta Flow cytometry analyses of water samples collected from a depth of 10 m identified 6 microbial groups: Prochlorococcus, three groups of Synechococcus, photosynthetic eukaryotes, and heterotrophic bacteria. Minimum growth rates (µ) for Prochlorococcus, all Synechococcus groups, and photosynthetic eukaryotes were 0.55, 0.29, and 0.45 µ day-1, respectively, and suggest relatively high rates of productivity despite low nutrient conditions on the reef. During a series of 5-h incubations with reef corals performed just after sunset or prior to sunrise, reductions in the abundance of photosynthetic picoeukaryotes, Prochlorococcus and Synechococcus cells, were observed. Of the three Synechococcus groups, one decreased significantly during incubations with each coral and the other two only with M. mirabilis. Removal of carbon from the water column is based on coral consumption rates of phytoplankton and averaged between 138 ng h-1 and 387 ng h-1, depending on the coral species. A lack of coral-dependent reduction in heterotrophic bacteria, differences in Synechococcus reductions, and diurnal variation in reductions of Synechococcus and Prochlorococcus, coinciding with peak cell division, point to selective feeding by corals. Our study indicates that bentho-pelagic coupling via selective grazing of microbial groups influences carbon flow and supports heterogeneity of microbial communities overlying coral reefs.IMPORTANCE We identify interactions between coral grazing behavior and the growth rates and cell abundances of pelagic microbial groups found surrounding a Caribbean reef. During incubation experiments with three reef corals, reductions in microbial cell abundance differed according to coral species and suggest specific coral or microbial mechanisms are at play. Peaks in removal rates of Prochlorococcus and Synechococcus cyanobacteria appear highest during postsunset incubations and coincide with microbial cell division. Grazing rates and effort vary across coral species and picoplankton groups, possibly influencing overall microbial composition and abundance over coral reefs. For reef corals, use of such a numerically abundant source of nutrition may be advantageous, especially under environmentally stressful conditions when symbioses with dinoflagellate algae break down.


Assuntos
Antozoários/fisiologia , Bactérias/crescimento & desenvolvimento , Recifes de Corais , Eucariotos/crescimento & desenvolvimento , Microbiota , Animais , Região do Caribe , Água do Mar/microbiologia , Microbiologia da Água
8.
Front Microbiol ; 11: 542372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101224

RESUMO

Much is known about how broad eukaryotic phytoplankton groups vary according to nutrient availability in marine ecosystems. However, genus- and species-level dynamics are generally unknown, although important given that adaptation and acclimation processes differentiate at these levels. We examined phytoplankton communities across seasonal cycles in the North Atlantic (BATS) and under different trophic conditions in the eastern North Pacific (ENP), using phylogenetic classification of plastid-encoded 16S rRNA amplicon sequence variants (ASVs) and other methodologies, including flow cytometric cell sorting. Prasinophytes dominated eukaryotic phytoplankton amplicons during the nutrient-rich deep-mixing winter period at BATS. During stratification ('summer') uncultured dictyochophytes formed ∼35 ± 10% of all surface plastid amplicons and dominated those from stramenopile algae, whereas diatoms showed only minor, ephemeral contributions over the entire year. Uncultured dictyochophytes also comprised a major fraction of plastid amplicons in the oligotrophic ENP. Phylogenetic reconstructions of near-full length 16S rRNA sequences established 11 uncultured Dictyochophyte Environmental Clades (DEC). DEC-I and DEC-VI dominated surface dictyochophytes under stratification at BATS and in the ENP, and DEC-IV was also important in the latter. Additionally, although less common at BATS, Florenciella-related clades (FC) were prominent at depth in the ENP. In both ecosystems, pelagophytes contributed notably at depth, with PEC-VIII (Pelagophyte Environmental Clade) and (cultured) Pelagomonas calceolata being most important. Q-PCR confirmed the near absence of P. calceolata at the surface of the same oligotrophic sites where it reached ∼1,500 18S rRNA gene copies ml-1 at the DCM. To further characterize phytoplankton present in our samples, we performed staining and at-sea single-cell sorting experiments. Sequencing results from these indicated several uncultured dictyochophyte clades are comprised of predatory mixotrophs. From an evolutionary perspective, these cells showed both conserved and unique features in the chloroplast genome. In ENP metatranscriptomes we observed high expression of multiple chloroplast genes as well as expression of a selfish element (group II intron) in the psaA gene. Comparative analyses across the Pacific and Atlantic sites support the conclusion that predatory dictyochophytes thrive under low nutrient conditions. The observations that several uncultured dictyochophyte lineages are seemingly capable of photosynthesis and predation, raises questions about potential shifts in phytoplankton trophic roles associated with seasonality and long-term ocean change.

9.
Nat Microbiol ; 5(1): 154-165, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768028

RESUMO

Most eukaryotic microbial diversity is uncultivated, under-studied and lacks nuclear genome data. Mitochondrial genome sampling is more comprehensive, but many phylogenetically important groups remain unsampled. Here, using a single-cell sorting approach combining tubulin-specific labelling with photopigment exclusion, we sorted flagellated heterotrophic unicellular eukaryotes from Pacific Ocean samples. We recovered 206 single amplified genomes, predominantly from underrepresented branches on the tree of life. Seventy single amplified genomes contained unique mitochondrial contigs, including 21 complete or near-complete mitochondrial genomes from formerly under-sampled phylogenetic branches, including telonemids, katablepharids, cercozoans and marine stramenopiles, effectively doubling the number of available samples of heterotrophic flagellate mitochondrial genomes. Collectively, these data identify a dynamic history of mitochondrial genome evolution including intron gain and loss, extensive patterns of genetic code variation and complex patterns of gene loss. Surprisingly, we found that stramenopile mitochondrial content is highly plastic, resembling patterns of variation previously observed only in plants.


Assuntos
Eucariotos/genética , Variação Genética , Genoma Mitocondrial/genética , DNA Mitocondrial/genética , Eucariotos/classificação , Evolução Molecular , Flagelos , Genes Mitocondriais/genética , Genoma/genética , Processos Heterotróficos , Íntrons , Oceano Pacífico , Filogenia , Análise de Célula Única , Estramenópilas/classificação , Estramenópilas/genética
10.
Support Care Cancer ; 28(7): 3313-3322, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31758323

RESUMO

PURPOSE: A patient non-adherence with oral anticancer agents is a well-recognized barrier to effective treatment. The aim of this prospective study was to evaluate the efficacy of a therapeutic education program among non-adherent patients treated with Capecitabine alone or associated with Lapatinib. METHODS: Sixty-five cancer patients were enrolled. Among them, 55 participated in the first observational phase of the study, measuring adherence using electronic MEMS pillboxes (medication event monitoring system). An adherence score was assessed in the form of a composite adherence score including intake dose and intake intervals. Ten non-adherent patients (adherence score < 80%) were included in the intervention phase of the study and were enrolled on a therapeutic education program. The efficacy of the program was evaluated on the basis of an improvement in adherence scores. We also studied factors influencing adherence. RESULTS: The average adherence score was 83.6 ± 15.7% in the overall population. Forty-one patients were adherent (adherence score > 80%) and 14 patients were non-adherent (adherence score < 80%). The therapeutic education program for non-adherent patients (n = 10) increased their adherence score by 17.8% and led 60% of these patients to become adherent. The number of toxicities during the first cycles was a predictive factor for non-adherence. CONCLUSION: This study showed an improvement in adherence to Capecitabine ± Lapatinib among non-adherent patients by way of a therapeutic education program.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Capecitabina/uso terapêutico , Lapatinib/uso terapêutico , Adesão à Medicação/estatística & dados numéricos , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Capecitabina/farmacologia , Feminino , Humanos , Lapatinib/farmacologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
11.
Sci Data ; 6(1): 277, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757971

RESUMO

SeaFlow is an underway flow cytometer that provides continuous shipboard observations of the abundance and optical properties of small phytoplankton (<5 µm in equivalent spherical diameter, ESD). Here we present data sets consisting of SeaFlow-based cell abundance, forward light scatter, and pigment fluorescence of individual cells, as well as derived estimates of ESD and cellular carbon content of picophytoplankton, which includes the cyanobacteria Prochlorococcus, Synechococcus and small-sized Crocosphaera (<5 µm ESD), and picophytoplankton and nanophytoplankton (2-5 µm ESD). Data were collected in surface waters (≈5 m depth) from 27 oceanographic cruises carried out in the Northeast Pacific Ocean between 2010 and 2018. Thirteen cruises provide high spatial resolution (≈1 km) measurements across 32,500 km of the Northeast Pacific Ocean and 14 near-monthly cruises beginning in 2015 provide seasonal distributions at the long-term sampling site (Station ALOHA) of the Hawaii Ocean Time-Series. These data sets expand our knowledge of the current spatial and temporal distributions of picophytoplankton in the surface ocean.


Assuntos
Biomassa , Fitoplâncton/crescimento & desenvolvimento , Carbono/análise , Fluorescência , Oceano Pacífico , Pigmentos Biológicos , Água do Mar
12.
Philos Trans R Soc Lond B Biol Sci ; 374(1786): 20190086, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31587639

RESUMO

Giant viruses have remarkable genomic repertoires-blurring the line with cellular life-and act as top-down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four 'PacV' partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10-5), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence-absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue 'Single cell ecology'.


Assuntos
Genoma Viral , Vírus Gigantes/fisiologia , Metagenoma , Eucariotos/virologia , Vírus Gigantes/genética , Metagenômica , Oceano Pacífico , Filogenia
13.
Philos Trans R Soc Lond B Biol Sci ; 374(1786): 20190090, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31587652

RESUMO

Photosynthesis in eukaryotes first arose through phagocytotic processes wherein an engulfed cyanobacterium was not digested, but instead became a permanent organelle. Other photosynthetic lineages then arose when eukaryotic cells engulfed other already photosynthetic eukaryotic cells. Some of the resulting lineages subsequently lost their ability for phagocytosis, while many others maintained the ability to do both processes. These mixotrophic taxa have more complicated ecological roles, in that they are both primary producers and consumers that can shift more towards producing the organic matter that forms the base of aquatic food chains, or towards respiring and releasing CO2. We still have much to learn about which taxa are predatory mixotrophs as well as about the physiological consequences of this lifestyle, in part, because much of the diversity of unicellular eukaryotes in aquatic ecosystems remains uncultured. Here, we discuss existing methods for studying predatory mixotrophs, their individual biases, and how single-cell approaches can enhance knowledge of these important taxa. The question remains what the gold standard should be for assigning a mixotrophic status to ill-characterized or uncultured taxa-a status that dictates how organisms are incorporated into carbon cycle models and how their ecosystem roles may shift in future lakes and oceans. This article is part of a discussion meeting issue 'Single cell ecology'.


Assuntos
Ecologia/métodos , Eucariotos/fisiologia , Traços de História de Vida , Biologia Marinha/métodos , Análise de Célula Única/métodos
14.
Proc Natl Acad Sci U S A ; 116(41): 20574-20583, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548428

RESUMO

Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.


Assuntos
Evolução Biológica , Eucariotos/virologia , Vírus Gigantes/genética , Phycodnaviridae/genética , Rodopsina/metabolismo , Água do Mar/virologia , Proteínas Virais/metabolismo , Ecossistema , Genoma Viral , Vírus Gigantes/classificação , Metagenômica , Oceanos e Mares , Phycodnaviridae/classificação , Filogenia , Prótons , Rodopsina/química , Rodopsina/genética , Proteínas Virais/química , Proteínas Virais/genética
15.
Protist ; 170(2): 187-208, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31055251

RESUMO

Nassellaria are marine protists belonging to the Radiolaria lineage (Rhizaria). Their skeleton, made of opaline silica, exhibit an excellent fossil record, extremely valuable in micro-paleontological studies for paleo-environmental reconstruction. Yet, to date very little is known about the extant diversity and ecology of Nassellaria in contemporary oceans, and most of it is inferred from their fossil record. Here we present an integrative classification of Nassellaria based on taxonomical marker genes (18S and 28S ribosomal DNA) and morphological characteristics obtained by optical and scanning electron microscopy imaging. Our phylogenetic analyses distinguished 11 main morpho-molecular clades relying essentially on the overall morphology of the skeleton and not on internal structures as previously considered. Using fossil calibrated molecular clock we estimated the origin of Nassellaria among radiolarians primitive forms in the Devonian (ca. 420 Ma), that gave rise to living nassellarian groups in the Triassic (ca. 250 Ma), during the biggest diversification event over their evolutionary history. This morpho-molecular framework provides both a new morphological classification easier to identify under light microscopy and the basis for future molecular ecology surveys. Altogether, it brings a new standpoint to improve our scarce understanding of the ecology and worldwide distribution of extant nassellarians.


Assuntos
Filogenia , Rhizaria/classificação , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Rhizaria/citologia , Rhizaria/genética , Rhizaria/ultraestrutura , Tempo
16.
ISME J ; 12(1): 304-308, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994824

RESUMO

Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H+-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought.


Assuntos
Dinoflagelados/genética , Dinoflagelados/classificação , Genes de RNAr , Genômica , Filogenia , Análise de Célula Única
17.
Environ Microbiol ; 19(8): 3219-3234, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28585420

RESUMO

Bathycoccus and Ostreococcus are broadly distributed marine picoprasinophyte algae. We enumerated small phytoplankton using flow cytometry and qPCR assays for phylogenetically distinct Bathycoccus clades BI and BII and Ostreococcus clades OI and OII. Among 259 photic-zone samples from transects and time-series, Ostreococcus maxima occurred in the North Pacific coastal upwelling for OI (36 713 ± 1485 copies ml-1 ) and the Kuroshio Front for OII (50 189 ± 561 copies ml-1 ) and the two overlapped only in frontal regions. The Bathycoccus overlapped more often with maxima along Line-P for BI (10 667 ± 1299 copies ml-1 ) and the tropical Atlantic for BII (4125 ± 339 copies ml-1 ). Only BII and OII were detected at warm oligotrophic sites, accounting for 34 ± 13% of 1589 ± 448 eukaryotic phytoplankton cells ml-1 (annual average) at Station ALOHA's deep chlorophyll maximum. Significant distributional and molecular differences lead us to propose that Bathycoccus clade BII represents a separate species which tolerates higher temperature oceanic conditions than Bathycoccus prasinos (BI). Morphological differences were not evident, but quick-freeze deep-etch electron microscopy provided insight into Bathycoccus scale formation. Our results highlight the importance of quantitative seasonal abundance data for inferring ecological distributions and demonstrate significant, differential picoprasinophyte contributions in mesotrophic and open-ocean waters.


Assuntos
Clorófitas/classificação , Geografia , Fitoplâncton/classificação , Estações do Ano , Clorofila/análise , Ecótipo , Meio Ambiente , Oceanos e Mares , Filogenia , Água do Mar
18.
Curr Biol ; 27(1): R15-R16, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073013

RESUMO

Ocean surface warming is resulting in an expansion of stratified, low-nutrient environments, a process referred to as ocean desertification [1]. A challenge for assessing the impact of these changes is the lack of robust baseline information on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple evolutionary events [1-3]. While amassing data from ocean ecosystems for the Baselines Initiative (6,177 near full-length 16S rRNA gene sequences and 9.4 million high-quality 16S V1-V2 amplicons) we identified two deep-branching plastid lineages based on 16S rRNA gene data. The two lineages have global distributions, but do not correspond to known phytoplankton. How the newly discovered phytoplankton lineages contribute to food chains and vertical carbon export to the deep sea remains unknown, but their prevalence in expanding, low nutrient surface waters suggests they will have a role in future oceans.


Assuntos
Carbono/metabolismo , Fitoplâncton/citologia , Plastídeos/genética , Evolução Biológica , Mudança Climática , Ecossistema , Oceanos e Mares , Fitoplâncton/fisiologia , Plastídeos/classificação , Plastídeos/fisiologia , RNA Ribossômico 16S/genética
19.
BMC Genomics ; 17: 267, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029936

RESUMO

BACKGROUND: Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. RESULTS: We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. CONCLUSIONS: Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.


Assuntos
Evolução Biológica , Clorófitas/genética , Genoma de Planta , Embriófitas/genética , Genômica/métodos , Íntrons , Modelos Genéticos , Família Multigênica , Filogenia , Proteoma/genética , RNA de Algas/genética , Análise de Sequência de RNA , Transcriptoma
20.
ISME J ; 10(9): 2158-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26953597

RESUMO

Dissolved organic nitrogen (DON) supports a significant amount of heterotrophic production in the ocean. Yet, to date, the identity and diversity of microbial groups that transform DON are not well understood. To better understand the organisms responsible for transforming high molecular weight (HMW)-DON in the upper ocean, isotopically labeled protein extract from Micromonas pusilla, a eukaryotic member of the resident phytoplankton community, was added as substrate to euphotic zone water from the central California Current system. Carbon and nitrogen remineralization rates from the added proteins ranged from 0.002 to 0.35 µmol C l(-1) per day and 0.03 to 0.27 nmol N l(-1) per day. DNA stable-isotope probing (DNA-SIP) coupled with high-throughput sequencing of 16S rRNA genes linked the activity of 77 uncultivated free-living and particle-associated bacterial and archaeal taxa to the utilization of Micromonas protein extract. The high-throughput DNA-SIP method was sensitive in detecting isotopic assimilation by individual operational taxonomic units (OTUs), as substrate assimilation was observed after only 24 h. Many uncultivated free-living microbial taxa are newly implicated in the cycling of dissolved proteins affiliated with the Verrucomicrobia, Planctomycetes, Actinobacteria and Marine Group II (MGII) Euryarchaeota. In addition, a particle-associated community actively cycling DON was discovered, dominated by uncultivated organisms affiliated with MGII, Flavobacteria, Planctomycetes, Verrucomicrobia and Bdellovibrionaceae. The number of taxa assimilating protein correlated with genomic representation of TonB-dependent receptor (TBDR)-encoding genes, suggesting a possible role of TBDR in utilization of dissolved proteins by marine microbes. Our results significantly expand the known microbial diversity mediating the cycling of dissolved proteins in the ocean.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Proteínas/metabolismo , Archaea/genética , Bactérias/genética , California , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Oceanos e Mares , Fitoplâncton/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...